RAG优化技巧

30
0
0
2024-05-10

RAG优化技巧

RAG的挑战

RAG通过检索现有的大量知识,结合强大的生成模型,为复杂的问答、文本摘要和生成任务带来了全新的解决方案。然而,尽管RAG有其独特的优势,但在实践过程中也遭遇了多个挑战。

  • 1数据质量差导致检索效果差

在RAG模型中,检索阶段的输出直接影响到生成阶段的输入和最终的输出质量。如果RAG数据库中存在大量的错误信息并被检索,这可能引导模型走向错误的方向,即使优化检索阶段做大量的工作,可能对结果的影响也微乎其微。

  • 数据向量化的信息损失

为了实现高效的文档检索,通常需要将原始的文本数据转化为数值向量,这一过程又称为数据向量化。数据向量化的目的是将文本数据映射到一个低维的向量空间中,使得语义相似的文本在向量空间中的距离较近,而语义不相似的文本在向量空间中的距离较远。然而,数据向量化也会导致一定程度的信息损失,因为文本数据的复杂性和多样性很难用有限的向量来完全表达。因 此,数据向量化可能会忽略一些文本数据的细节和特征,从而影响文档检索的准确性。

  • 语义搜索的不准确

在RAG中,语义搜索是指根据用户的问题,从文档集合中检索出与问题语义最相关的文档,这一过程又称为数据召回。语义搜索的难点在于如何理解用户的问题和文档的语义,以及如何衡量问题和文档之间的语义相似度。目前,语义搜索的主流方法是基于数据向量化的结果,利用向量空间中的距离或相似度来度量语义相似度。然而,这种方法也存在一些局限性,例如向量空间中的距离或相似度并不一定能反映真实的语义相似度,而且向量空间中的噪声和异常值也会干扰语义搜索的结果。因此,语义搜索的准确率也无法有100%的保证。